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Abstract. We present a Bethe Ansatz based investigation of a one-dimensional (1D) Heisenberg spin chain
in a real 3D crystal lattice. We have shown that due to an influence of the lattice distortion on a crystalline
field of ligands of magnetic ions, a Heisenberg antiferromagnetic spin S = 1

2
chain is unstable under the

appearance of a magnetic anisotropy of the “easy-plane” type. The effects of an external magnetic field
and nonzero temperature onto such a phase transition are studied.

PACS. 75.10.Jm Quantized spin models – 75.30.Gw Magnetic anisotropy – 75.80.+q Magnetomechanical
and magnetoelectric effects, magnetostriction

Last decade the study of low-temperature behaviour of
low dimensional quantum antiferromagnets (AF) has at-
tracted great interest. In particular, several quantum AF
have been synthesized in which the interaction of spins
along some space direction was 102−104 times larger than
along other directions of the crystal lattice [1,2]. Such
magnets usually reveal phase transitions to an ordered
(three-dimensional) magnetic state at very low tempera-
tures (Tc ∼ 1K). However at temperatures between Tc and
a characteristic energy of the exchange interaction along
this special direction, they usually manifest properties of
magnetic 1D chains. In 1D systems quantum fluctuations
are usually enhanced due to peculiarities of the density
of states. Therefore approximate theoretical methods can
give even qualitatively incorrect results for 1D quantum
systems. Thus, a theoretical investigation of many-body
effects in 1D AF spin chains demands for the use of exact
quantum methods like Abelian or non-Abelian bosoniza-
tion or Bethe ansatz [3].

Among the variety of low-dimensional spin systems
studied last decade, the systems with site spins S = 1

2

have a special place (for instance, ions of Cu2+ [1] or
V4+) [2]. Besides, magnetic behaviour of rare-earth ions
at low temperatures can be described by effective spin-1

2

Hamiltonians1. It is worthwile to notice that such a de-
scription, however, yields a sharp anisotropy of magnetic
properties of such effective spin S = 1

2 models. These sys-

? Dedicated to J. Zittartz on the occasion of his 60th birthday
a e-mail: az@thp.uni-koeln.de
1 I.e. at low temperatures the lowest doublets are most im-

portant there.

tems become either Ising-like or XY -like, depending on
which two levels (doublet) of the real (multi-level) total
moment of the site f orbital of the magnetic ion are the
lowest-lying ones [4].

It is well-known that a magnetic anisotropy in spin
systems can play an essential role when studying theoreti-
cally low temperature magnetic properties [5]. A magnetic
anisotropy manifests itself in such a way, that a degener-
acy of the energy is lifted2. Such a situation emerges in
many-body AF spin systems, where Heisenberg AF spin-
spin interaction does not prefer any direction. Hence, the
states with spins directed along any vector of a lattice are
energetically equivalent. Here a magnetic anisotropy leads
to a situation where some crystal directions become more
energetically favorable. In this case the total spin of a sys-
tem is not an integral of motion. It is well known that a
magnetic anisotropy appears as the manifestation of crys-
talline (electric) fields of ligands (i.e. non-magnetic neigh-
bouring ions of magnetic ones) [4]. This field affects the
spin subsystem of electrons of magnetic ions indirectly, via
a spin-orbital interaction, which is usually weak. Therefore
a change (appearance) of a magnetic anisotropy is caused
by the change of the symmetry of non-magnetic neigh-
bouring ions’ lattice places. For only the spin subsystem
the emergence of an uniaxial magnetic anisotropy reduces
the symmetry of spins from SU(2) for Heisenberg magnet
to U(1) for the uniaxial one.

A magnetic anisotropy may be of single-ion type as
well as of inter-ion type [4,5]. In our paper we will study

2 Directions of quantization of a total spin moment are sim-
ilar for only isotropic Heisenberg exchange coupling or for free
spin.
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essentially many-body spin systems, so we will investi-
gate the inter-ion magnetic anisotropy influence first of all.
Naturally, systems of spins S = 1

2 may have only inter-ion
magnetic anisotropy.

We will show that 1D AF Heisenberg spin S = 1
2 chains

are unstable at low temperatures under the appearance of
a magnetic anisotropy of “easy-plane” type. This mag-
netic anisotropy appears due to a weak distortion of (3D)
non-magnetic ions, and, as a consequence, the change of
its crystalline electric fields. Our results have been de-
rived in mean field approximation. Such an approxima-
tion is well based here. We deal with a model system, in
which the lattice is three-dimensional, despite the fact that
the spin-spin exchange interaction is one-dimensional. So
the mean field method, undoubtedely, can be used here.
Moreover, we study the instability of the magnetically
isotropic homogeneous system against homogeneous dis-
tortions. It produces a homogeneous magnetic anisotropy
along the total chain, i.e. we do not consider phase transi-
tions to incommensurate phases (states). In other words,
the phonon, which lifts the spin degeneracy, has a com-
mensurate wave vector (quasimomentum) and the insta-
bility of the Heisenberg AF spin chain is governed by this
phonon. We will consider also effects of an external mag-
netic field and nonzero temperature onto the instability
mentioned above.

The nature of the instability studied in this paper is
very similar to the phase transition of Peierls type in
spin S = 1

2 XY chains [6,7]. A spontaneous appear-
ance of the biaxial magnetic anisotropy in XY chain of
spins S = 1

2 was predicted in reference [8]. In references
[6–8] the Hamiltonians of spin XY chains were mapped
exactly (using a Jordan-Wigner transformation [9]) onto
non-interacting spinless fermion chains. In other words,
in references [6–8] effectively noninteracting fermion sys-
tems were studied. As for the present work, we investigate
here the 1D Heisenberg AF chain of spins S = 1

2 . Even
using the Jordan-Wigner transformation one can map it
onto 1D spinless fermion system with two-particle interac-
tion. Hence, we study essentially many-body co-operative
Jahn-Teller-like effects in an interacting 1D quantum spin
system.

The Hamiltonian of a (periodic) chain of N spins
S = 1

2 with antiferromagnetic interaction has the form:

H0 = −
1

2

N∑
l=1

(σxnσ
x
n+1 + σynσ

y
n+1 +∆σznσ

z
n+1), (1)

where σαn (α = x, y, z) are Pauli operators of α-projection
of the spin in n-th site, the exchange constant is equated to
unity, and ∆ is the parameter of an (inter-ion) magnetic
anisotropy. |∆| > 1 corresponds to the “easy-axis” type
of anisotropy, while |∆| < 1 is connected with the “easy-
plane” type of magnetic anisotropy. The case ∆ = −1 is
the isotropic Heisenberg AF spin chain. The wave function
of a state with M spins down can be found in the form

of the so-called Bethe ansatz, i.e. the plane wave permu-
tations:

Ψ =
∑

x1<x2<...<xM

∑
P

AP exp i
M∑
j=1

pPjxj |x1...xM 〉, (2)

where xj are coordinates of j-th spin down, p are quasi-
momenta (conjugated to coordinates), and P denotes per-
mutation of quasimomenta. The vector |x1...xM 〉 = σ−x1

...

σ−xM |0〉, where |0〉 is the spin polarized (“ferromagnetic”)
state with all spins up, and σ±n = σxn ± iσyn. Then the
energy of this AF chain with M spins down is:

Emag = −
N∆

2
+ 2

M∑
j=1

(∆− cos pj). (3)

The values of the quasimomenta that parametrize eigen-
functions and eigenvalues of the Schrödinger equation are
found from the periodic boundary conditions, which have
the well-known Bethe ansatz equations’ form

Npj = 2πIj −
M∑

l=1,l6=j

θ(pj , pl), (4)

where

θ(pj , pl) = 2 tanh−1

[
∆ sin

pj−pl
2

cos
pj+pl

2 −∆ cos
pj−pl

2

]
, (5)

and Ij are (half)integers for M (even) odd. These num-
bers parametrize eigenfunctions (2) and eigenvalues (3) of
our quantum problem. In the limit of ∆ → 0 our system
reduces to the isotropic XX spin chain, and equations (4)
become the well-known periodic boundary conditions for
the free 1D lattice fermion gas.

Let ∆ = −1 + uδ, i.e. the parameter (uδ) now charac-
terizes the appearence of a magnetic anisotropy. u is the
magnetoelastic constant and δ is the distortion of non-
magnetic ligands from their symmetric configuration. A
magnetic anisotropy is caused by the change of the crys-
talline fields of ligands. Hence, it is connected with the
shifts of equilibrium states of the 3D lattice of (nonmag-
netic) ligands. For small δ, this process causes in the lowest
order an enhancement of the energy of the totally elastic
subsystem

Eel = NC
δ2

2
, (6)

where C is the elastic constant. That is why a gain in the
magnetic energy (Eq. (3)) due to the magnetic anisotropy
is followed by the loss in elastic energy (as it must be).
In other words, the degeneracy of the Heisenberg AF
spin chain is lifted due to an effect analogous to the
co-operative Jahn-Teller effect [4], i.e. the influence of
the elastic subsystem onto the electronic one. We find
the energy of the spin subsystem (Eq. (3)) exactly, us-
ing the well known results of the classic paper [10].
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Fig. 1. The total groundstate energy of magnetic and elastic
subsystems Etot as function of the shift δ of lattice positions
of nonmagnetic ions. The elastic constant is C = 0.46.

Let ∆ ≡ −1 + uδ = − cosµ (uδ > 0) for the “easy-plane”
type of magnetic anisotropy. Then the Bethe ansatz equa-
tions (Eqs. (4)) can be solved in the thermodynamic limit
(where N → ∞, M → ∞ and M/N is fixed). They be-
come

sinµ

coshα− cosµ
= 2πρ(α)

+

∫ Q

−Q
dβρ(β)

sin 2µ

cosh(α− β) − cos 2µ
,

(7)

where we changed the variables from the quasimomenta
pj to rapidities αj

pj = −i ln
sinh(αj + iµ)

sinh(αj − iµ)
· (8)

ρ(α) is the density of quantum rapidities α, which from
now parametrize the eigenvalues and eigenvectors of our
spin subsystem. The limits of integration (−Q,Q) are de-

termined by the M value (M = N
∫Q
−Q dαρ(α))3. In the

absence of an external magnetic field h it was proved ex-
actly in reference [10] that the rapidities α fill the to-
tal interval [−∞,∞] for AF spin chain. The solution of
equation (7) is found by using a Fourier transformation.
This solution yields together with equation (3) in the ther-
modynamic limit

Emag = −
N∆

2
−N

∫ Q

−Q
dαρ(α)

2 sin2 µ

coshα− cosµ
· (9)

3 So, they are connected with the total magnetization of our
system.

Fig. 2. The total magnetic and elastic groundstate energy Etot
as function of the distortion of lattice positions of nonmagnetic
ligands δ and the elastic constant of the lattice C.

For h = 0 (Q =∞) we find

Emag = −N∆−N sin(µ)

∫ ∞
−∞

dx
sinh(π − µ)x

cosh(µx) sinh(πx)
·

(10)

Now we minimize Etot = Emag + Eel with respect to the
distortion δ of the nonmagnetic lattice. We find that the
“easy-plane” AF chain minimum energy is connected with
the solution of the equation

Cδeqv=

∂

∂δ

[
∆+sin(µ(δ))

∫
dx

sinh[(π−µ(δ))]x

sinh(πx) cosh(µ(δ)x)

]
|δ=δeqv . (11)

Under the assumption that our lattice is in the ground-
state for any scale of our problem we plot the dependence
of the total groundstate energy of the elastic and magnetic
subsystems as function of the shift δ of the 3D nonmag-
netic lattice of ligands. In Figure 1 one can see such a
dependence for the elastic constant value C = 0.464. We
see that the minimum of the total energy corresponds to a
nonzero value of the lattice distortion. It means that in the
groundstate the minimal energy is connected with a shift
of the 3D nonmagnetic ions. This, in turn, produces the
electric field, which causes a nonzero magnetic anisotropy
for the 1D AF spin subsystem due to spin-orbit coupling.

We can ask the question whether such a behaviour
emerges for any value of the elastic constant C? In
Figure 2 we plot the dependence of the total groundstate
energy of our system of both the elastic constant C and
the shift δ. We can see that the minimum in δ, which
is connected with a nonzero distorsion of the ligand lat-
tice, appears only for large enough values of the lattice

4 Note that we measure everything in isotropic exchange con-
stant units.
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Fig. 3. The dependence of the total groundstate energy of
magnetic and elastic subsystems on the distortion δ and weak
external magnetic field h.

elastic constant C. This is not surprising since one needs
high enough values of elastic shifts to see the magnetic
anisotropy effect in the spin subsystem.

We can study the same effect for ∆ < −1 in a sim-
ilar fashion, i.e., for an “easy-axis” type of magnetic
anisotropy. Working in a similar way, we solved the Bethe
ansatz equations (Eq. (4)) for this case. After tedious but
straightforward calculations we found that for any elastic
constant C the minimal total groundstate energy of the
spin and elastic subsystems corresponds to a zero value
of the distortion δ of the 3D ligand lattice. So we con-
clude that for such a case there is no appearance of an
additional ligand’s electric field. Thus, there is no mag-
netic anisotropy of “easy-axis” type. This result is not
surprising, because we know well that in the case of an
Ising-like (“easy-axis”) magnetic anisotropy, the AF spin
S = 1

2 chain without an external magnetic field or for low
enough fields has gapful low-lying excitations.

Now we want to know what happens with such an in-
stability of the 1D Heisenberg AF spin chain under the
appearance of an “easy-plane” anisotropy when an exter-
nal magnetic field h is applied. First, let us study the case
of low magnetic fields h� 1. The Hamiltonian of the spin
subsystem then has the form:

H = H0 − h
∑
n

σzn, (12)

where h = gµBH, g is the gyromagnetic ratio, H is the
magnetic field, and µB is Bohr’s magneton. Using the re-
sults of reference [10], i.e. solving the integral equation
(Eq. (7)) by the Wiener-Hopf method for small enough
magnetic fields, we find

Emag = Emag|h=0 −Nh
2 µ

4π(π − µ) sinµ
· (13)

Minimizing the total spin and elastic energy over the lat-
tice shift δ we see, that for any weak magnetic field h the

minimal groundstate energy corresponds to the appear-
ance of the nonzero minimal distortion δ. The dependence
of the total groudstate energy of the spin and elastic sub-
systems via the external magnetic field h and the shift δ
of the ligands in 3D lattice is depicted in Figure 3. It is
seen that for any value of the magnetic field h there exists
a minimum (which corresponds to a nonzero shift δ) in
the distortion dependence of the total energy.

For high enough magnetic field values h > hc, where hc
is the critical field for the transition in the spin-saturated
(“ferromagnetic”) state, we can minimize the total energy
Etot with respect to δ. This yields:

δeqv =
u

4C
· (14)

It means that for this case a high external magnetic field
does not change the situation drastically: the co-operative
effect of the electric crystalline in the spin subsystem and
the distortion of the 3D ligand lattice in the elastic subsys-
tem produce essentially a nonzero magnetic anisotropy of
“easy-plane” type. So we can conclude that the effect of
the appearence of the “easy-plane” magnetic anisotropy
in a Heisenberg AF spin chain does not depend on the
external magnetic field.

In the previous part we have studied the groundstate
properties of the Heisenberg quantum spin chain. It is
worthwile to understand what happens when switching
on nonzero temperature T . It is obvious that5 for very
high temperatures the isotropic spin system will be sta-
ble. This is transparent also from symmetry arguments:
usually the high temperature phase corresponds to a situ-
ation with higher symmetry. The question arises whether
the critical temperature Tc of such a co-operative Jahn-
Teller-like phase transition is zero6 or a situation may exist
in which for some range of temperatures the phase with
nonzero “easy-plane” magnetic anisotropy emerges for the
spin S = 1

2 chain. To decide this question, one can use
the thermal Bethe ansatz [11]. For simplicity we treat
only the case of low temperatures. At low temperatures
one knows well the Sommerfeld expansion, see, e.g., refer-
ence [12]:

Fmag = Emag −N
πT 2

6vF
, (15)

where vF is the Fermi velocity of the lowest excitation of
the AF chain (spinon). For zero magnetic field case, h = 0,
it is given by vF = π sin(µ)/µ [10]. We minimize the to-
tal free energy Ftot = Fmag + Eel over the distortion of
ligands δ. Once more, we consider small enough tempera-
tures, so we suppose that the elastic subsystem is still in
the groundstate. This assumption is justified because the
elastic subsystem has usually a much larger energy scale
than the magnetic one. In Figure 4 we plot the depen-
dence of the total free energy as function of the shift δ
and the temperature. Note that we considered only small

5 For our case of an inter-ion magnetic anisotropy.
6 Which is to be expected for a 1D spin system, where the

only special point in T is T = 0.
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Fig. 4. The temperature (T ) and lattice distortion (δ) depen-
dences of the total free energy of the system. Temperatures are
small compared to the exchange constant (J = 1).

enough temperatures. One can see that the minimum in
the δ dependence (corresponding to a nonzero equilibrium
shift, and, thus, to the nonzero magnetic anisotropy) ex-
ists in the low temperature region, while the minimum has
a tendency to disappear with increasing temperature. It
is worthwile to notice here that equation (15) does not
describe the behavior of the spin chain for the whole tem-
perature region. For higher temperatures a full thermal
Bethe ansatz treatment is necessary. It will be reported
elsewhere.

We can suppose that one may expect the appearance of
the “easy-axis” type magnetic anisotropy for high enough
magnetic field values, too (the field value must be larger
than the gap value of the elementary spin excitation).

We want to point out that the effect does not depend
on the way the interaction between the spin and elastic
subsystems is introduced. The results qualitatively emerge
when we study Emag as a function of µ itself, and the elas-
tic energy in a form Eel = NCµ2/2, see, e.g., reference [7].

Unfortunately, we do not know any direct experiments
on 1D quantum AF spin S = 1

2 systems which revealed
the spontaneous appearence of a magnetic anisotropy.
However, we can speculate about results of a recent
experiment [13] on quasi-two dimensional antiferromag-
net Ba2CuGe207 with Cu2+ magnetic ions. There even
for an almost isotropic square spin lattice, the magnetic
anisotropy effect was necessary to explain the dependence
of the magnetization on an external in-plane magnetic
field. To our minds, such an effect is the indirect confirma-
tion of the predicted appearence of a magnetic anisotropy,
though for a 2D AF spin 1

2 Heisenberg system. We strongly

believe that the effect must emerge for any spin 1
2 AF

system with a non magnetically ordered groundstate and
gapless low-lying excitations.

To conclude, in this paper we have studied a one-
dimensional quantum Heisenberg spin S = 1

2 antiferro-
magnetic chain. We have shown that under the influence of
a three-dimensional lattice of nonmagnetic ions (ligands)
the Heisenberg spin chain becomes unstable against the
appearance of an “easy-plane” magnetic anisotropy. An
external magnetic field does not affect this co-operative
magneto-elastic effect of Jahn-Teller nature. We have also
shown that a phase with nonzero magnetic anisotropy
exists for some (nonzero) interval of low temperatures.
The instability studied in this paper is analogous to the
well-known spin-Peierls instability of spin S = 1

2 chains
[6,7]. The microscopic origin of the instability is the
shift of degeneracy of the spin subsystem with isotropic
exchange interaction by the appearance of magnetic
anisotropy connected with the change of an electric field
of lattice nonmagnetic ions (ligands).
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